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Società Italiana di Fisica
Springer-Verlag 1999

Rapid Note

Positive and negative Hanbury-Brown and Twiss correlations
in normal metal-superconducting devices
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Abstract. In the light of the recent analogs of the Hanbury-Brown and Twiss experiments [1] in mesoscopic
beam splitters, negative current noise correlations are recalled to be the consequence of an exclusion
principle. Here, positive (bosonic) correlations are shown to exist in a fermionic system, composed of a
superconductor connected to two normal reservoirs. In the Andreev regime, the correlations can either be
positive or negative depending on the reflection coefficient of the beam splitter. For biases beyond the gap,
the transmission of quasiparticles favors fermionic correlations. The presence of disorder enhances positive
noise correlations. Potential experimental applications are discussed.

PACS. 74.40.+k Fluctuations (noise, chaos, nonequilibrium superconductivity, localization, etc.) –
74.50.+r Proximity effects, weak links, tunneling phenomena, and Josephson effects – 72.70.+m Noise
processes and phenomena

In condensed matter systems, correlations effects between
carriers exist either because particles interact with each
other, or alternatively because the observable one consid-
ers involves a measurement on more than one particle.
The characterization of current fluctuations in time con-
stitutes a central issue in quantum transport. Noise mea-
surements have been used to detect the fractional charge
of the excitations in the quantum Hall effect [3,4]. More re-
cently, a fermion analog of the Hanbury-Brown and Twiss
experiment [2] was achieved [1] with mesoscopic devices,
obtaining a clear signature of the negative correlations ex-
pected from the Pauli principle. Here we recall rapidly the
ingredients which are necessary for negative correlations
and we propose a Hanbury-Brown and Twiss experiment
for a fermionic system were both negative and positive
(bosonic) noise correlations can be detected.

The system which is proposed (see inset of Fig. 1) con-
sists of a junction, or beam splitter, connected by electron
channels to reservoirs, which is similar to that of refer-
ence [6], except that the injecting reservoir is a supercon-
ductor. Because of the proximity effect at the interface
between the superconductor and the normal region, elec-
trons and holes behave like Cooper pairs provided there
is enough mixing between them. While Cooper pairs are
not bosons strictly speaking, an arbitrary number of these
can exist in the same momentum state, which opens the
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possibility for bosonic correlations. Bosonic behavior in
electron systems has been previously discussed, for in-
stance for excitons in coupled quantum wells [7], where
the possibility of observing Bose condensation is in debate.
On the other hand, it may be possible to detect negative
correlations in adequately prepared photonic systems [8].

Negative noise correlations in branched electron cir-
cuits are the consequence of an exclusion principle, which
exists for fermions (Pauli principle) or even for parti-
cles which obey Haldane’s exclusion statistics [9]. In these
two situations, [6,10,11], ignoring thermal effects, low fre-
quency current noise in a two-probe device is suppressed
by a factor (1 − T ), with T the transmission probability.
Consider first a circuit with three leads with correspond-
ing currents and noises Ii and Si labeled i = 1, 2, 3, as
depicted in inset of Figure 1 (but ignoring region 4, which
we take later to be a superconductor). Assume that par-
ticles (fermions or exclusion particles) with charge q are
injected from 3 with a chemical potential µ3 while 1 and
2 are kept at the same chemical potential µ1. Noise cor-
relations between 1 and 2 can be computed by invoking
that the fluctuations in 3 [6] equal that of a composite
lead (1 + 2): at ω = 0, S3 = S(1+2). The definition of the
noise correlations between 1 and 2 is:

S12 ≡ lim
T→+∞

1
T

∫ T

0

∫ +∞

−∞
dtdt′〈δI1(t)δI2(t+ t′)〉 , (1)

with δIi the fluctuation around the average current
in i. The correlations S12 are obtained by subtracting
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Fig. 1. Noise correlation between the two normal reservoirs
of the device (inset), as a function of the transmission proba-
bility of the beam splitter, showing both positive and negative
correlations. Inset: the device consists of a superconductor (4)-
normal (3) interface which is connected by a beam splitter
(shaded triangle) to reservoirs (1) and (2).

the individual noise of 2 and 3 from 1: S12 = [S3 −
(S1+S2)]/2. For electrons and exclusion particles, a multi-
terminal noise formula [6] gives:

S3 = (µ3 − µ1)
2q2

hg

∑
i

Tr[s̃(1+2),3s̃
†
(1+2),3

× (1− s̃(1+2),3s̃
†
(1+2),3)], (2)

were s̃(1+2),3 is the (2 × 1) transmission matrix between
3 and (1 + 2), which is a submatrix of the scattering ma-
trix with elements sij describing the junction, 1 is the
two-dimensional identity matrix, and g is the exclusion
parameter (g = 1 for fermions). Using current conserva-
tion, one obtains negative correlations for both fermion
and exclusion particles:

S12 = −2q2

h

(µ3 − µ1)
g

s13s
†
23s
†
13s23. (3)

Minimal negative correlations S12/S1 = −1 are obtained
for a reflectionless, symmetric junction.

Positive correlations in systems where the injecting
lead is a superconductor are now addressed. The scat-
tering approach to quantum transport in the presence
of normal-superconductor (NS) boundaries is available
[12–14] so the basic steps are reviewed briefly. The
fermion operators which enter the current opera-
tor are given in terms of the quasiparticle states
using the Bogolubov transformation [15] ψσ(x) =∑
n

(
un(x)cnσ − σv∗n(x)c†n−σ

)
, where c†nσ (cnσ) are

quasiparticle creation (annihilation) operators, n =
(i, α,E) contains information on the reservoir (i) from
which the particle (α = e, h) is incident with energy
E and σ labels the spin. The contraction of these two

operators gives the distribution function of the particles
injected from each reservoir, which for a potential bias V
are: fie ≡ f(E − eV ) for electrons incoming from i, sim-
ilarly fih ≡ f(E + eV ) for holes, and fi,α = f(E) for
both types of quasiparticles injected from the supercon-
ductor (f is the Fermi-Dirac distribution). Here, eV > 0
means that electrons are injected from regions 1 and 2.
Invoking electron-hole symmetry, the (anti)correlations of
holes are effectively studied. un(x) and vn(x) are the solu-
tions of the Bogolubov-de Gennes equations which contain
the relevant information on the reflection/transmission of
electrons and holes (and their quasiparticle analogs) at
the NS interface. The current operator allows to derive
a general expression for the zero frequency noise corre-
lations between normal terminals i and j [14,16] which
constitutes our starting point:

Sij(0) =
e2~2

2m2

1
2π~

∫ +∞

0

dE
∑
α,β

fiα(1− fjβ)
[
AiαjβA

∗
iαjβ

+B∗iαjβBiαjβ +AiαjβBiαjβ +B∗iαjβA
∗
iαjβ

]
, (4)

where current matrix elements are defined by Aiαjβ ≡
ujβ∂xu

∗
iα−u∗iα∂xujβ and Biαjβ ≡ v∗jβ∂xviα− viα∂xv∗jβ .

The electron and hole wave functions describing scattering
states α (particle) and i (lead) are expressed in terms of
the elements sijαβ of the S-matrix which describes the
whole NS ensemble:

uiα(xj) = [δijδαeeik+xj + sjieαe−ik+xj ]/
√
v+ (5a)

viα(xj) = [δijδαhe−ik−xj + sjihαeik−xj ]/
√
v− (5b)

where xj denotes the position in normal lead j and k± (v±)
are the usual momenta (velocities) of the two branches.
Sij(0) has been shown to have no definite sign in four-
terminal noise measurements [14].

Specializing now to the NS junction connected to a
beam splitter (inset of Fig. 1), 6× 6 matrix elements are
sufficient to describe all scattering processes. At zero tem-
perature, the noise correlations between the two normal
reservoirs simplify to:

S12(0) =
2e2

h

∫ eV

0

dE
∑
i=1,2

×
[∑
j=1,2

(s∗1iees1jeh − s∗1ihes1jhh)
(
s∗2jehs2iee − s∗2jhhs2ihe

)
+
∑
α=e,h

(s∗1iees14eα − s∗1ihes14hα) (s∗24eαs2iee − s∗24hαs2ihe)
]
,

where the subscript 4 denotes the superconducting lead.
The first term represents normal and Andreev reflection
processes [17], while the second term invokes the trans-
mission of quasiparticles through the NS boundary. It was
noted previously [16] that in the pure Andreev regime the
noise correlations vanish when the junction contains no
disorder: electron (holes) incoming from 1 and 2 are simply
converted into holes (electrons) after bouncing off the NS
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interface. The central issue, whether disorder can induce
changes in the sign of the correlations, is now addressed.

Consider first the pure Andreev regime, were eV � ∆,
the superconducting gap, for which a simple model for a
disordered NS junction [12] is readily available. The junc-
tion is composed of four distinct regions (see inset Fig. 1).
The interface between 3 (normal) and 4 (superconductor)
exhibits only Andreev reflection, with scattering ampli-
tude for electrons into holes rA = γ exp(−iφ) (the phase
of γ = exp[−i arccos(E/∆)] is the Andreev phase and φ is
the phase of the superconductor). Next, 3 is connected to
two reservoirs 1 and 2 by a beam splitter which is parame-
terized by a single parameter 0 < ε < 1/2 identical to that
of reference [5]: the splitter is symmetric, its scattering
matrix coefficients are real, and transmission between 3
and the reservoirs is maximal when ε = 1/2, and vanishes
at ε = 0. Electrons and holes undergo multiple reflections
in central 3 and the scattering matrix coefficient sijαβ of
the whole device are computed using the analogy with a
Fabry-Perot interferometer.

siiαα = (x− 1)(1 + γ2x2)/[2(1− γ2x2)]

sijeh = γe−iφ(1− x)(1 + x)/[2(1− γ2x2)]

sijee = (x+ 1)(1− γ2x2)/[2(1− γ2x2)] i 6= j , (6)

were x =
√

1− 2ε and the remaining coefficients of the
S-matrix are found using time reversal symmetry.

Next one proceeds with the standard approximation
γ ' −i which applies for low biases in order to perform
the energy integrals in equation (6):

S12(ε) =
2e2

h
eV

ε2

2(1− ε)4

(
−ε2 − 2ε+ 1

)
. (7)

The noise correlations vanish at ε = 0, when conductors
1 and 2 constitute a two-terminal device decoupled from
the superconductor, and in addition, S12 vanishes when
ε =

√
2 − 1. A plot of S12 as a function of the beam

splitter transmission (Fig. 1) indicates that indeed, the
correlations are positive (bosonic) for 0 < ε <

√
2− 1 and

negative (fermionic) for
√

2 − 1 < ε < 1/2. At maximal
transmission into the normal reservoirs (ε = 1/2), the cor-
relations normalized to the noise in 1 (or 2) give the neg-
ative minimal value: electrons and holes do not interfere
and propagate independently into the normal reservoirs.
It is then expected to obtain the signature of a purely
fermionic system. When the transmission ε is decreased,
Cooper pairs can leak in region 3 [18] because of multi-
ple Andreev processes. Further reducing the beam splitter
transmission allows to balance the contribution of Cooper
pairs with that of normal particles. Equation (6) predicts
maximal (positive) correlations at ε = 1/3: a compromise
between a high density of Cooper pairs and weak trans-
mission.

The model described above may not be convincing
enough, as an ideal Andreev interface was assumed. More-
over, it does not allow to generalize the results to the case
where quasiparticles in the superconductor contribute to
the current. Quasiparticles have fermionic statistics, so
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Fig. 2. Noise correlations using an NS boundary modeled
by BTK for weak disorder, Z = 0.1: from top to bottom
eV/∆ = 0.5, 0.95, 1.2, 1.8. Inset: proposed device for the ob-
servation of positive/negative correlations; at the boundary of
a superconductor (S), two point contacts (P1) and (P2) are
connected to a semitransparent mirror (M).

their presence is expected to cancel the positive contri-
bution of Cooper pairs leaking on the normal side. In
particular, in the limit were eV � ∆, one should recover
fermionic correlations.

These issues bear similarities with a recent discussion
of singularities in the finite frequency noise of NS junc-
tions [19]: below the gap, a singularity exists at the Joseph-
son frequency, while above gap there appear additional
features at eV ±∆ associated with electron and hole-like
quasiparticles, which give single-particle behavior in the
limit eV � ∆. However, finite frequency noise probes the
charge (e or 2e) of the carriers, while here one is probing
the statistics of the effective carriers in the junction.

The energy dependence of the scattering coefficients is
therefore needed to describe the correlations away from
the pure Andreev regime. The numerical calculations
which follow are performed using the BTK model [20],
where the disordered interface between regions 3 and 4
(inset of Fig. 1) can be characterized by a small number
of parameters: the pair amplitude is assumed to be a step
function ∆(x) = ∆Θ(x) and a delta function potential
barrier V (x) = ~vFZδ(x) is imposed, where vF the Fermi
velocity and Z � 1 (Z � 1) for strong (weak) disorder.
The beam splitter is taken to be similar to the previous
calculation [5], assuming that the reflection/transmission
of electrons does not depend significantly on the incoming
energy.

Consider the case of weak disorder, Z = 0.1 (Fig. 2).
At weak biases, good agreement is found with the previous
analytical results displayed in Figure 1, except that for a
fully transmitting splitter, the ratio of the correlations di-
vided by the noise in region 1 does not reach the extremal
value −1: an early signature of disorder. When the bias
is further increased but is kept below the gap, the phase
accumulated in Andreev processes by electrons and holes



322 The European Physical Journal B

0.0 0.1 0.2 0.3 0.4 0.5
−0.2

0.0

0.2

ε

S 
( 

 )
/S

 (
0.

5)
12

ε
11

Fig. 3. Noise correlations using an NS boundary modeled
by BTK for intermediate disorder: Z = 1 (same biases as in
Fig. 2).

with various energies is spread over the interval [0, π/2]:
positive correlations are weaker, but they survive at low
beam splitter transmission. Further increasing the voltage
beyond the gap destroys completely the bosonic signature
of the noise.

A strikingly different behavior is obtained for interme-
diate disorder at Z = 1 (Fig. 3). First, for weak biases, the
noise correlations remain positive over the whole range of
ε, with a maximum located at ε ' 0.43, which is close
to the case of a reflectionless splitter. This maximum be-
comes a local minimum for higher biases, where positive
correlations remain quite robust nevertheless. Just below
the gap (eV = 0.95), correlations oscillate between the
positive and the negative sign, but further increasing the
bias eventually favors a fermionic behavior. Calculations
for larger values of Z confirm the tendency of the system
towards dominant positive correlations at low biases with
S12(ε)/S1(1/2) > 1 over a wide range of ε (not shown).
The phenomenon of positive correlations in fermionic sys-
tems with a superconducting injector is thus enhanced
by disorder at the NS boundary. Nevertheless, for strong
disorder, the absolute magnitude of S1 and S12 becomes
rather small, which limits the possibility of an experimen-
tal check in this regime.

An interesting feature of the present results is the fact
that both positive and negative correlations are achieved
in the same system. A suggestion for this device is depicted
in the inset of Figure 2. Assume that a high mobility two
dimensional electron gas has a rather clean interface with
a superconductor [21]. A first point contact close to the
interface selects a maximally occupied electron channel,
which is incident on a semi-transparent mirror similar to
the one used in the Hanbury-Brown and Twiss fermion
analogs [1]. A second point contact located in front of the
mirror, allows to modulate the reflection of the splitter
in order to monitor both bosonic and fermionic noise
correlations. In addition, by choosing a superconductor

with a relatively small gap, one could observe the depen-
dence of the correlations on the voltage bias without en-
countering heating effects in the normal metal.

Hanbury-Brown and Twiss type experiments may be-
come a useful tool to study statistical effects in mesoscopic
devices. Here, noise correlations have been shown to have
either a positive or a negative sign in the same system.
Close to the boundary, a fraction of electrons and holes
are correlated. This can be viewed as a finite density of
Cooper pairs which behave like bosons. The presence of
disorder allows in some cases to enhance the appearance of
bosonic correlations. Similar studies could be envisioned
in the Fractional Quantum Hall Effect (FQHE) where the
collective excitations of the correlated electron fluid have
unconventional statistics [9].

Discussions with the late R. Landauer, with D.C. Glattli and
with M. Devoret are greatfully acknowledged.
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